Дела

Вертикальные углы равны

Науколандия

Статьи по естественным наукам и математике

Докажите, что вертикальные углы равны

Вертикальные углы образуются, если стороны одного угла продлить за его вершину.

В этом случае получаются две пересекающиеся прямые, образующие четыре угла. Эти четыре угла попарно вертикальные.

Вертикальные углы находятся друг напротив друга, а рядом лежащие углы являются смежными, так как у них одна сторона общая, а не общие стороны лежат на одной прямой.

Равенство вертикальных углов является следствием определения смежных углов. Смежные углы по определению в сумме составляют 180°.

Возьмем любой угол, образованный двумя пересекающимися прямыми, обозначим его как ∠1 и примем его величину как a .

Тогда смежный ∠2 с ним будет равен 180° – a. Но у этого ∠2 с другой стороны есть другой смежный угол – ∠3. Его величина будет равна 180° минус величина ∠2. Но ∠2 у нас равен 180° – a, поэтому:

∠3 = 180° – ∠2 = 180° – (180° – a) = 180° – 180° + a = a

То есть ∠1 и ∠3 равны.

Можно продолжить и доказать, что ∠4 равен ∠2. Если ∠3 равен a , то ∠4, как смежный с ним, равен 180° – a.

На рисунке ниже доказательство выглядит несколько по-другому. ∠2 смежный и с ∠1, и с ∠3. Поскольку его величина постоянна, а сумма смежных углов равна 180°, то чтобы получить величину ∠2, надо из 180 вычитать одно и то же число, значит ∠1 = ∠3.

wiki.eduVdom.com

Инструменты сайта

на занятия (831) 247 47 55

+7 904 064 04 04

Смежные и вертикальные углы. Перпендикулярные прямые

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Сумма смежных углов равна 180°

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Вертикальные углы равны

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

АН — перпендикуляр к прямой

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x , тогда согласно теореме 1.

Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.

∠ АОС = 180° - ∠ COD = 180° - 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х . Тогда градусная мера большего угла будет Зх . Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.

Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол АОС) смежный с углом COD, и, значит, по теореме 1

∠ BOD = ∠ АОС = 180° - 50° = 130°.

Отыскание смежных углов треугольника. Пример 5

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°.

Найдите величину угла ABC . Ответ дайте в градусах.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

3 + 4 =